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Abstract-A parametrized five-field variational principle that can accommodate both compressible
and incompressible hyperelasticity is presented. The primary variables are mean and deviatoric
stresses. mean and deviatoric strains. and displacements. Through appropriate selection of par
ameters the functional of this general principle specializes to those previously presented by Atluri
Reissner. Herrmann and Franca.

1. GOVERNING EQUATIONS

Consider a li"early hyperelastic boc~l' under static loading that occupies the volume V. The
body is bounded by the surf,lce S. which is decomposed into S: Sd V St. Displacements are
prescribed on Sd while surface tractions ,tre prescribed on St. The outward unit normal on
S is denoted by n == ",.

The three unknown volume fields are displacements u == II,. infinitesimal stmins c == e,l'
and stresses tr == tr,l' The problem data indude: the body force field b == bj in V. prescribed
displacements a== ti, on S,I. and prescribed surface tractions i == i, on St.

The relations between the volume lields ,Ire the strain displacement eq uations

c = !(Vu+Vru) = J)u or e'i = !(II,.I+III") in V.

the constitutive equations

a = Ec or (1'1 = £""ek/ in V.

and the equilibrium (balance) equations

-diva = D*a = b or (1,J,j+b, = 0 in V.

(I)

(2)

(3)

in whieh D* = - div denotes the adjoint opemtor of the symmetric gmdient D = !(V +V r ).
Thc stress vector with respect to a direction defined by the unit vector v is denoted as

a ,. = a' v. or (1", = (1'll'/. On S the surface-traction stress vector is delined as an = a' n or
am = a,/n!' With this notation the traction and displacement boundary conditions may be
stated as

an =i j or (1,jnj = i, on St. and u = a or II, = ti, on Sd.

2. NOTATION

(4)

2.1. Field dependency
In this investigation of variational methods, the notational conventions in Felippa

(1989a.b,c) and Felippa and Militello (1989. 1990) are used. An independently varied
field will be identified by a superposed tilde. for example u. A dependent field is identified
by writing the independent field symbol as superscript. For example. if the displacements
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are independently varied. the derived strain and stress fields are

e" = !(V + VT)u = Du. a" = Ee" = EDu. (5)

Using this convention. tildeless symbols such as u. e and a are reserved for the exact or for
gf!neric fields.

2.2. lntt'gral ahhreriations
Volume and surface integrals may be abbreviated by placing domain-subscripted

parentheses and square brackets. respectively. around the integrand. For example:

Iff and g are vector functions. and p and q tensor fum:tions. their inner product over r' is
denoted in the usual manner:

f <kr1 /. I"( .~>v = . i.(!, l t'.
~ .

(7)

and similarly for surface integrals. in which case square brackets are used.

2.3. ,,'tr('ss anc! strain !'('ctors
To facilitate the construction of variational matrix expressions. stresses and strains

will he arranged as (i-component column vectors constructed from the tensors ",/ and ('"
following the usual conventions of structural mechanics:

"I I "I I

(f:. !. e:22

all (' II
(S)a = c=

al1 2£1 I ~

0'1_' 2£,:._\

"" 2('11

Then (a, C)l = (a,,",,), = (arc)v. and so on. Similarly. fourth-orda constitutive tensors
such as £"kl arc arranged as symmetric 6 )( 6 matrices (resulting from their restriction to
the space of symmetric stress-strain tensors) in the usu~ll manner.

3. STRESS STRAIN SPLITTINGS

For incompressible materials. in which div u = tr Vu = lI,., = O. the stress strain
relation (2) only holds in the space of trm:e1ess strain tensors. and its inverse does not exist.
With a view to including both compressible and incompressihle elasticity in the variational
principles, some general spliltings of the strain and stress fields arc studied helow. Define
(actual) pressure p and total strain condensation (negative of the volumetric strain) () as

p = - ~ tr a = - H"I I + "11 +a 1.1 )

() = -tr c = - kll +('11 +cld = -dh· u. (9)

Throughout this paper it shall be assumed that the material is roll/metrically isotropic in
the sense

p = kO. ( 10)
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where k > 0 is the modulus of compression (one third of the bulk modulus K). In the
incompressible limit. k - x..

3.1. Paramt'tri=t:d splittillg
A family of stress-strain splittings considered here is

(I \)

where 15" is the Kronecker ddta. and ~ and '1 are scalars in the range [0. I] that determine
the splitting. If'; = O• .1'(0),; == a". whereas if'; = I. .1'( I)" reduce to the usual deviatoric
stresses Sr; and the argument ~ will be omitted. If'; = O. g(O)" == e

"
. whereas if'; = I. g( I),}

reduce to the usual deviatoric strains g" and the argument '1 will b\: omitted.
Using the matrix notation (8) for strains and stresses. (II) is represented as

where h is the 6-component column vector:

o 0 0: T.

( 12)

( (3)

Note that hrh = 3. h'(I' = tr(l' = -3{1. hre = tre = -Ii. h1s(';) = trs(';) = -3(1-';)p.
hr~('1l = tr~('1l = -(I-'Illi. and h's = hrg = O.

3.2. COllstraillts Oil .; alld'l
Parameters'; and'l are not imh.:pendent hut dlOsen so that s(';) and ~(/ll are connected

hy an invertihle "deviatoric" constitutive cquation

( 14)

whcre C is finite and nonsingular. This clmdition is assumed to hold if ~ = '1 = I for any
material. For other values the choice is possihle if the material is fully isotropic because. if
this is so. (:!) may he written [see e.g. Section 22 ofGurtin (1972)):

(1'" = 2)1t'" + ).t'H or tr = 2)11: - ;.//h. (15)

where II and ;. an: the Lame eoetlicients (JI is the same as the shear modulus G). so that
C = 2)11. Furthermore. II. ;. and k an.: related to the elastic modulus £ and Poisson's ratio
I,through

;.(1 +1') £
k= =

31' 3( 1-21')

I • ;.( 1- 21') 1 • £
,(3/. + 211). II = ... ,.. = ,(k -I.) = ....~ ...._-

2v - 2( I + v)
( 16)

Suhstituting these relations into (15) and (14) one obtains the relation

( 17)

The pair'; = 'I = I satisfies this constraint for any I'. If I' # 0.5, specifying 0 ~ .; < 1 or'l
determines the other; for example if" = n. .; = 31'/( 1+ I'), If the material is incompressible.
i.e, I' = 0.5. .; = I regardh.:ss of thc valLH: 01'".

3.3. D('/'iatoric splitting
The usual deviatoric stress strain splitting is obtained by taking ~ = '1 = I :

a = 5-"h. c = g- .IOh. (18)

As noted ahove. this choice satisfies the condition (14) for isotropic or anisotropic materials.
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3.4. Lame splitting
The Lame splitting for isotropic materials-so called because of its intimate relation

ship with the constitutive form (15) that displays the two Lame coefficients-is obtained if
'7 = 0 so that g = e. Then ~ is chosen so that t = s(~) = 2jJ.e:

3\'
a = Ce-~ph = 2Jle- -I-ph = t-qh.

+v
(19)

In the literature q = ~p is called the pseudo pressure whereas t = s(~) = 2jJ.e = Ce is called
the extra stress. although a better name would be pseudo deviatoric stress. In the incom
pressible limit. pseudo pressure q and extra stress t reduce to ordinary pressure p and
deviatoric stress s. respectively.

Although the Lame splitting may in principle be extended to anisotropic materials. par
ameter ~ then becomes a matrix: 1- (3k) - Ie. which complicates derivations substantially.
The same is true of (12) unless ~ = '7 = I. It follows that splittings other than (18) are of
limited value for non-isotropic behavior.

4. THE GENERALIZED STRAIN ENERGY

The variational principles of linear elasticity studied here have the general form

n = V-Po (20)

Here V is the generalized strain energy. which characterizes the stored energy of defor
mation. and r is the forcing potential. which characterizes all other contributions. The
conventional form of r is

(21 )

Two other forms of 1', which arc of interest in hybrid finite element formulations, called p,1
and 1" for displacement-generaliled and traction-generaliled, respectively, are studied in
Fclippa (19~9a,b,c) and Fclippa and Militello (1989.1990). As this term is not affected by
material behavior, attention will be focused on V.

For a compressible material, the generalized strain energy introduced in Felippa and
Militello (19S9, 1990) has the following parametrized structure:

where JII through J11 arc numerical coefficients. The three independent fields are stresses it,
strains cand displacements u. Following the notational conventions stated in Section 2, the
derived fields that appear in (22) are

a' = Ec, aU = EDu. e" = E - lit, eU = Du. (23)

As an example. the V of Hu-Washizu's functional is obtained by settingJ, ~ = - I.J, J = I,
h~ = I. all others being zero:

Equation (22) can be rewritten in matrix form as

I r{it}TlJIII
V = - JI a'

2 v aU ymm

(25)

where I denotes the 6 x 6 identity matrix. The functional-generating symmetric matrix (to
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justify the symmetry note. for example. thatilJ(o\eU)v = VIJ(o\eU)v+ VI J(e". a")v. and so
on)

[

ill

JJ = ~,~

JIJ

il~ j,,]
i" hJ

hJ hJ

(26)

is seen to fully characterize (22) hence. once the forcing potential P is selected. the functional
(20). The subscript of J identifies the number of independent parameters. as shown below.

On replacing (23) into (22). U may be expressed in terms of the independent fields as

il ~I

h~E

h)DTE
(27)

which verifies the symmetry of J). Using (27) the first variation of U may be presented as

where

L\c = i"c" + i, ~c + illCu
• .1(1 = il ~c7+h~(I'+j~I(I".

(I' = J11c7 + j ~ \(1'+lll(l".

(28)

(29)

The last two terms in (28) combine with contributions from the forcing potential variation.
For example, if P is the conventional forcing potential (21), the complete variation of
(l' = V-I" is

Using p J or P' does not change the volume terms. Consequently the Euler equations
associated with the volume terms of the first variation

L\c = O. .1(1 = O. div (I' +b = O. (31)

are independent of the forcing potential.
For consistency of the Euler equations with the field equations (IH3). one must have

L\e = O• .1(1 = 0 and (I' = (I if the assumed stress and strain fields reduce to the exact ones.
Therefore

JI I +J12 +JI J = O.

JI2+JU+J2J = O.

JIJ+hJ+JJJ = I. (32)

Because of these constraints. the maximum number of independent parameters that define
the entries of J J is three as claimed. The specialization of these functionals to conventional
and parametrized forms is discussed in Felippa and Militello (1989. 1990).

S. SPLIT FORM OF GENERALIZED STRAIN ENERGY

The expression (22) for U is not suitable for incompressible materials. To construct a
parametrized form that encompasses incompressibility the generalized strain energy is
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augmented with additional independent fields. one of which must be the pressure. There
are several ways of accomplishing this objective. Hac the starting point is the conventional
deviatoric splitting (18) and construction of an augmented generalized strain energy ['d.'

(subscripts stand for "deviatoric split") in tams of the tin: independent tlelds s. g. u. p and
J. Using (25) as a "template" the following quadratic form is postulated

T
.I III .I I ,I .I ,.h .I I ,h .I I hhs .I I: I g'

s" J: II .I: :I .1:,1 J:.h .I: ,h J:hh g

~J
s" I'll h:1 .I ),1 I,.h I,;h I'hh g"

dV. (33)Ud , =
P J.,h r

J.:h
r i .,h' J.. .I.; J.h f}I'

.1
i, I h r j;:h r

i"h
r jq j" j ", /Tp

[''' ih I h' jh:h r
i",h

r
j". j", j"" /I"

in which the derived tields are

g" = (D -\h di\')li = D"u. g' = C IS. II" = k Iii. ()" = -div U.

s" = Cg. s" = Cg" = CD.,u. fI" = kiT. [''' = k/J" = -k dh' U. (34)

The kernel matrix of the quadratic form (33) is now 21 x 21 and is characterized by the 36
icodlicients. Unlike the treatment in Secli\ln 4. cocllicient symmclry conditions are not set
lIh iI/it ill , Suhstituting (34) into (33). i'", may he expressed in terms of the live independent
tields as the quadratic f\lrm

lid, = ~ r-J,

in which

s

Ii

IT

i"e I

.I: ,I

i"D.:+j,,,kgr:ulh/C'

I'lh/C I

j;lkh'C I

JI,D., +i ",h div

i: ,CD" +i:"Ch dh'

D,:C<h, D" +h"h diq
+k grad (j(,)h/D" +i,,(, dh')

i. ,h/D" +.1." div

j"kh'D.,+JjJ div

i I: I

i"C
j,:D,:C+i,,:k grad hI

I"h/

j,:kh l

illk Ih

J:.k 'Ch

i qk I D,:Ch +}(,. grad

i ..k I

./,.

j"h

i:,Ch

j" D,:Ch +i" jk grad

II'
i"k

s
~

jj dV (35)

p
IT

when applied to a scalar function. The kernel matrix in (35) must he symmetric. a condition
that provides the following symmetry relations:

}m" = }"",. /1/ = 1.2.3 1/ = 1.2.3 im" = }"",. "1 = 4.5.6 1/ = 4.5.6

}m"I=}",,,k-'C. /1/=4.5.6 n= 1.2.3, (36)
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If these conditions are imposed on (33) that kernel matrix becomes

63

jill JI::I J'3 1 JI~h J,sh JI6h

i 1:: 1 1:: ::1 J::31 J::~h i::;h 1::6h

J"I i3:: 1 i,,1 h~h J"h h6h (37)
JI~k - ICh T i::~k-'ChT fqk-ICh T iH J~s J~6

i,;k - IChT i::;k-IChT h;k-IChT
J~s Js; JS6

il~k-'ChT i::,k-IChT f"k - ICh r
i~b J,~ Jb~

This is fully characterized by the 6 x 6 functional-generating symmetric matrix

ill i,:: il.1 JI~ i,s jib

i,:: h:: h3 i::~ 1::s 1::~

J I:: = ii, i::, II) Iq i35 J" (38)

i,~ i::~ iIJ iH i~; i~,

i,; i::; I" i~; i;s I"
ill, i::, j" i~~ J5h ihh

(the .J suhscript denotes the numher of free parameters. as explained helow). The kernel
matrix of (35) hecomes

iliC I i,::1 i l1 U,,-ilt,1I dh'

.h::C i:: ,CU. -1::1'ell div

i I \ I>~ CU. +i""k ~rad div)

-j,,(I>.:'CII div+~rad hl'CD.)

symm

The first variation of (35) is

J,~k 'h

1::~k 'Ch

I\Jk . •1>:'Ch

-J~, grad

JHk- 1

i,;h

h;Ch

I,sl>:Ch

-is,k grad

J~s

i"k

(39)

where

6g =J,,1f + i.::i: +iilg" +h(j,~lJP+ JI s{j+JI6 0").

6s =Jt::s +1::::s· + J::Js" + Ch(j::~OJ' + hsiJ+};:,O").

(I' =JIIS +1::,s· +Jns" + 8(J.q(}P + IISO+1160")

+hh T(jI"S+1::,s· +h,sU) -h(j~,p+J"l+J66P")

=JI JS +J::Js· +JJJs" + 8(J\J(}P + JJSO+JJ6O") - hU~bP + Js6P" + Jb6pU).

60 = hrk- I (jl ~s +J::~s· + J\JSU) + iH(JP + J~s{j+J~,O" =J~~()p + J~,{J+J4bO".

6p = hr(jl5s+J::;s· + JJSs") + J~sfi+JS;pll + J'bP" =J4,fi+js;p" + Js,p" (41)

where B = (I-lhh T)Ch. and the simplifications in (I'. 60 and 6p result from
hTs = hTsq = hTs" = 0 since the deviatoric stress tensor is traceless. Applying again the
consistency argument and noting that mean and deviatoric parts may vary independently.
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one obtains the constraint conditions

j'l+jl:+jIJ =0. jl~+jI5+jI6 =0. jl:+1"::+1":J =0.

h~+j:5+h6= O. jIJ+j:J+h3 = I. h~+jJ5+h6 = O.

j~6+j56+j66 = I. jH+j~5+j~6 = O. j~5+j55+j56 = O. (42)

Because of these nine constraints the maximum number of independent parameters that
define the coefficients of matrix (38) is 21 - 9 = 12 as claimed.

6. SIMPLIFICATIONS

Having a rXJ I: family of functionals for constructing approximation methods such as
finite elements leaves the selection wide open. In the absence of other information it appears
prudent to reduce the number of free parameters by setting all coefficients that couple mean
and deviatoric quantities equal to zero:

j'l jl ~ j, \ 0 0 {)

i I ~ in i~\ 0 0 0

i, \ Il~ i,l 0 {) 0
.J" = 0 0 0 iH j~5 i ~"

(43)

0 0 () II, i 55 j".

0 0 () j~" i '" i ""

subjcct to the constraints that the row (and column) sums be O. O. I. O. 0 ami I
rcspectively. This simplified form exhibits six indepcndent paramctcrs.

The next question is how to include exact incompressibility. for which k -+ ,Xi. A study
of the matrix (3lJ) reveals that the only coellicients all'ccting terms multiplied by k are j 5'

and it.t.. Onc solution would be to take j55 = /55/k. and jt.t. = i;.t./k with the primed
cocflicicnts as sourcc data. A morc cxpedicnt solution is to set thosc coeflicients to zcro,
which reduces (43) to

ill j, ~ j, \ 0 {) 0

j 1~ i:~ hJ 0 {) 0

j'3 jJ~ in 0 0 0
J~ =

0 0 0 2w - I I-w
(44)

-(JJ

0 0 0 -w 0 w

0 0 0 I - w w 0

where w is a free parameter that determines the lowcr 3 x 3 principal minor. The total
numbcr of paramcters is reduced to four. just one more than in compressible elasticity.
Thus the following practical rule emerges: any compressible-elasticity principle characterized
by the coetlicients (26) can bc extended to embody incompressibility by modifying U as
follows:

(a) Replace (1 and c by s and ~. respectively. (In fact. only the first modification is
actually needed. since srg = sl'c. etc.)

(b) Add thc pressure and volumetric strain tcrms characterized by the lower 3 x 3
principal minor in (44). If OJ is zero the volumetric strain drops out as independent field
and the additional terms reducc to

(45)

Furthermore. in exact incompressibility only the term - p div u survives.
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7. LAME SPLIITING

Consideration of the Lame splitting (19) is of interest because of historical reasons,
since the first mixed principle encompassing compressible and incompressible elasticity con
structed by Herrmann (1965) was based on it. Again one can start by postulating a quadratic
form for the generalized strain energy Ub (where subscripts stand for "Lame split"):

?
T

1,,1 II: I Inl 114h Iish Ilf)h eJ

r e I: II 1::1 IHI 1:4h 125h 1:6h e

, If 1''' '-'II 1.,: I IJ.l1 l)4h IJ5 h IJ6h e"
CLs = ::;

ci 141 hT IJ:hT IJ)hT 144 l.tS 146 (]'I
dV, (46)

- I"

" 15t hT 1~:hT IHhT 154 Iss 156 iJq

q" I~I hT 1~:hT 16JhT
h4 165 h6 0"

in which the l's coefficients take the place of the js, and where the new terms are

? = a-qh, 1'" = Ce, T" = CDu, e= 3v/(1 +v),

- • - " •. -) " .' d' - [)oJ / 1q = \;1'. q = .:;;.1, q = -<:;;. IV U, u" = q A. (47)

Going through the same mechanics one obtains relations similar to (35)-(40) with s, g, 1',
k <lnd O~ replaced by 1', C. q. ;. and 1>, respectively. Rut now hT-r is not necessurily zero and
consequently the counterpart of (41) retains more terms:

.'\c = Illc' +/12C+/11C" +h(l14I~+/ 15(1+/ 11,0").

L\-r = /I:?+/::?'- +/:11''' +Ch(/24()'1 +12/j+/z"OIt).

(1' = I, I?+/: ,1'" + II I tit +Ch(/\40" + IH () + II"OIt)

+hhf(l II,? +I:~ -r'- +1\(,1''') - h(lJl,p + I S6 tl +166 1'")

.'\0 = hi';. I (fIJi +I:Jre + I J4T") +/H()'I +14s (1+1460",

.'\CI = "f(lISi +12s t e + IJst") +14sq+ 15sl +Is"q",

Consistency with the field equations provides the twelve constraints

(4S)

III +/'2 +/ 1) = O. 114 +II S+116 = O. 112 +122 +/23 = O.

124 +125 +126 = 0, 113 +123 +1)) = I, 134 +/35 +/36 =0,

',,,+126 +,),, = O. 146+/56+/66 = I. 1,4 +124 +/)4 = O.

144 +145 +/41• = 0, Ils+l:s+/ lS = 0, 145+lss+156 = 0, (49)

This \caves 21 - 12 = 9 independent parameters in the functional-generating symmetric
matrix

III I,: 113 1'4 115 1'6
112 122 123 124 125 1: 6

t,) =
11.1 121 In 1.\4 I H I l6

(50)
1'4 124 1.\4 144 145 /46

I15 125 1)5 /45 Iss 156
116 126 1)1> /46 156 166

If the off-diagonal blocks of this matrix are set to zero as in (43). L9 becomes L" and the
conditions on the remaining nonzero coefficients are identical to those of J",
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Treatment of the more general splitting (12) with '1 -# 0 does not cause any particular
difficulties. However. as splittings other than (18) do not accommodate anisotropic
materials naturally. they will not be investigated further.

8. SPECIALIZATIONS

The simplest principle (in the sense of having the most sparse J matrix) that accom
modates both compressible and incompressible elasticity is obtained by specializing (44) to

0 0 0 0 0 0

0 0 0 0 0 0

0 0 I 0 0 0

J p = 0 0 0 -I 0 I
(51 )

0 0 0 0 0 0

0 0 0 I 0 0

This choice leaves only displacements and pressures as independent field variables and
yields

Up(u.p) = !(SII.gll)V-(p,~ +diVii)v = !(SII,ell)v-(fl+PdiVii)v' (52)

which lllay be viewed as a modification of the minimum potential energy functional. For
pradicaluse it is important to note that gil may be replaced by e" in the first integral since
tensor s:', is tra<.:c1ess. In the incompressible limit Up collapses to ~(s", e") v - (p, div u) I.

The specialization

0 -I I 0 0 0

-I I 0 0 0 0

I 0 0 0 0 0

JAR = 0 0 0 0 -I I
(53)

0 0 0 -I I 0

0 0 0 I 0 0

redu<.:es UJ.• - P to the live-field fun<.:tional presented by Atluri and Reissner (19lN; in that
paper p and 0 are defined as the negatives of the quantities used hen.:). Notice that sin<.:e
both 3 x 3 prin<.:ipal minors of J,u display the Hu-Washizu stru<.:ture of <.:ompressible
elasti<.:ity, use of (24) yields

in whi<.:h again gil and gmay be replaced by e" and e. respe<.:tively. Asjss -# O. this fun<.:tional
does not a<.:<.:ommodate exact incompressibility. This drawback can be easily <.:orre<.:ted,
however, through the te<.:hniques discussed in Section 6.

Finally, spe<.:ialization of (50) to

0 0 0 0 0 0 0 -I I 0 0 0

0 0 0 0 0 0 -I I 0 0 0 0

0 0 I 0 0 0 I 0 0 0 0 0
LII =

0 0 0 -I 0 I
L F =

0 0 0 -I 0 I

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 I 0 0
(55)
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reduces the functional lfts - P to those presented by Hemnann (1965) and Franca (1989).
respectively; which are identified as UH - P and UF- P in the sequel.

Herrmann's functional. which as noted above has historical importance. contains two
independent fields: displacements u and pseudo pressure q. Its U functional is

rr(~-) 1("") (if -d'-)v H U. q = ~ t" • e I - ~ +q n' u .
_I. v

(56)

The upper and lower 3 x 3 principal minors of L H display the structure of the minimum
potential energy and stress-displacement Reissner compressible elasticity functions. respec
tively.

Franca's functional contains four independent fields: extra stress t". total strains e.
displacements u and pseudo pressure q. Its C functional is

(
{I

C
)... ... ... l (/ ... ... u ... ... • ..

Uf(t".e.u.q) = ~(t" .e).+(t".e -e)l- ~.- +qdlv u .
_I. v

(57)

The upper and lower 3 x 3 principal minors of L f · display the structure of the H u-Washizu
and stress -displacement Reissner compressible-elasticity functions. respectively.

9. CONCLUSIONS

The parametrized formulations presented here extend the par,lI11etrized functionals of
Felippa and Militello (llJl\lJ. IlJlJO) to accommodate incompressibility. In doing so a wider
and perhaps bewildering range of possibilities is encountered. which raises some questions
as regards the usefulness of functional parametrization techniques.

The formulation of parametrized variational principles oilers conceptual and practical
advantages. From a conceptual standpoint the technique is intellel.:tually satisfying in that
all possible variational forms are obtained onl.:e and for all. This should be l.:ontrasted to
the conventional ease-by-l.:ase derivation. whil.:h l.:an only take "potshots" ,It the infinite
domain of possible funl.:tionals. The key pral.:tical advantage is that generating matrix
coellicients may be left free in finite element applications down to the element level. ,lIld
used to enhance the quality of the numeril.:al approximations as discussed in Fclippa
(19H9a.b.e) and Felippa and Militello (1989. 1990).

However. coming face to fal.:e with twelve free pammeters as in Section 5 may be
confusing and negate the claimed benefits of generality. The simplifications of Section 6
appear reasonable from an applications standpoint because: (I) they cut the number of
independent parameters while retaining tlexibility in the weighting of the participating fields.
and (2) all important specific functionals proposed to date arc still covered.

Finally. the simplicity and generality of the functionals based on the deviatoril.: splitting
(I H) should be kept in mind. It is dillicult to understand why the finite element literature is
still preol.:l.:upied with the Lame splitting and assol.:iated funl.:tionals. Not only is this splitting
unnatural for anisotropil.: materials but note that associated functionals such as (56) and
(57) degenerate for;. = O. which happens if~' = O. Atthis value. ~ = O. q vanishes identically.
,lIld 0;0 terms requiring special treatment appear in U. As a zero Poisson's ratio is physically
realizable the claim to genemlity of applic'ltion. even with restriction to isotropic behavior.
is seriously weakened.
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